A novel design approach for micro-robotic appendages comprised of active and passive elements with disparate properties

Author:

Milojević Andrija1ORCID,Shin Minchul2,Oldham Kenn R2

Affiliation:

1. Laboratory of Intelligent Machines, Department of Mechanical Engineering, School of Energy Systems, Lappeenranta University of Technology, Lappeenranta, Finland

2. Vibration and Acoustics Laboratory: Microsystems, Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA

Abstract

Recent innovations in microsystems materials and fabrication permit the creation of complex microactuation mechnisms with heterogeneous properties and behaviors. Meanwhile, emerging applications such as micro-robotics extend the environments in with microsystems may operate. This introduces substantial challenges for the design given the wide range of feasible devices. This paper describes a novel synthesis method based on structural topology optimization for the automated design of micro-robotic appendages realized by utilizing heterogeneous materials and embedded actuation. A typical mechanism designed by this approach, inspired by innovations in thin-film piezoelectric integration with other microstructures and materials, might include active smart actuators, elements formed from traditional semiconductor materials, and comparatively soft polymer flexures. We will introduce the framework for design optimization, and detailed procedure for problem definition, parameterization, and optimization. The focus of the synthesis is on realizing micro-robotic appendages that can achieve control of an end-effector in different directions (one and two). Original formulations of the optimization objective functions that lead to desired micro-robotic solutions are presented. Examples of different optimized designs are presented, with novel micro-robotic appendage solutions that can realize large in-plane displacement compared to prior devices, controllable actuation in largely-decoupled axes, and/or generation of unusual rotational displacement from initially planar geometries. Performance predicted by the design optimization algorithm is compared to simulated behavior through computational modeling. The presented synthesis method can be utilized by others to design micro-robotic solutions for different applications.

Funder

National Science Foundation grant IIS

Academy of Finland Research Council for Natural Sciences and Engineering

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3