A genetic algorithm-based optimization design on self-sensing active constrained layer damped rotating plates

Author:

Xie Zhengchao1,Wong Pak Kin1,Chong Ian Ian1

Affiliation:

1. Department of Electromechanical Engineering, University of Macau, Macau SAR, China

Abstract

This article investigates the vibration of a rotating constrained layer damped plate system. Although, currently, most existing research utilizes rotating structures as modeled beams, this work, however, models rotating structures as plates with constrained layer damping. Through the models investigated, this article develops a single-layer plate finite element model for a rotating structure to improve in both accuracy and versatility. Concurrently, existing research shows that the damping of the active constrained layer can provide more damping than the damping of the passive constrained layer. Therefore, in this study, the constraining layer is made of piezoelectric material and, thus, will work as both the self-sensing sensor and the actuator. In addition, a proportional control strategy is implemented to effectively control the damping in the rotating plate. Furthermore, due to a large number of design variables in the complex model incorporating viscoelastic damping, this study examines the application of genetic algorithm (GA) in optimizing the first two resonance amplitudes of the driving point mobility at the center of the rotating plate. A GA is applied to simultaneously determine several design parameters that maximize an objective function. Compared with a typical gradient search approach, Quasi-Newton method, GA can be more efficient and effective in finding the optimum configuration with the highest objective function value in the numerical example.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3