Capacitance changes in thin piezoelectric transducers embedded in isotropic host materials

Author:

Elvin Niell1,Elvin Alex2,Senderos Bruno Zamorano13

Affiliation:

1. Department of Mechanical Engineering, The City College of New York, New York, NY, USA

2. School of Civil and Environmental Engineering, The University of the Witwatersrand, Johannesburg, South Africa

3. The Boeing Company, Huntsville, AL, USA

Abstract

Constraining a piezoelectric material from freely expanding causes a reduction in capacitance. This reduction in capacitance has implications in energy harvesting, active vibration control, and ultrasonic sensing. This article investigates the reduction in capacitance when a thin piezoelectric disk is embedded in an isotropic host material. Both simplified (one-dimensional axisymmetric) and computational (finite element two-dimensional axisymmetric) analyses have been presented and used to calculate the expected reduction in capacitance of thin embedded piezoelectric disks for a number of ceramic-based piezoelectric materials. The analyses show that there is a non-linear relationship between the capacitance and the elastic modulus of the host material; with increasing host modulus, capacitance initially decreases rapidly but then asymptotically converges to the fully constrained case. A simplified equivalent spring axisymmetric model has been derived from the finite element model and has been used to explain some of the key geometric and material properties that effect the reduction in embedded capacitance. Preliminary experimental results show some agreement with the derived models; however, substantial further validation is required. Some implications of the derived results for energy harvesting are also discussed.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3