Vibration induced by active nematics

Author:

Saghatchi RoozbehORCID,Yildiz MehmetORCID

Abstract

Active elements in active nematics can impose forces on immersed bodies and move them accordingly. We numerically investigate the vibrational motion of a cantilever beam placed in active nematics. The continuous energy transfer from vortices to the beam results in beam oscillation, whose direction and amplitude depend on the vortex strength, size and position. Referring to the kinetic-energy spectrum, we indicate that both the large- and small-scale vortices are the primary mechanism for the energy transfer between the fluid and beam, leading to the beam oscillatory motion, with the contribution from the large-scale vortices being higher. We investigate the effect of fluid properties such as activity, viscosity and elastic constant on the oscillation frequency. We show that the intensification of the activity increases peak frequency, and there is a linear correlation between the peak frequency and activity. We further demonstrate the reciprocal relationship between viscosity and peak frequency. Subsequently, we relate the increase and decrease in the peak frequency to the energy injection/dissipation by activity/viscosity. Moreover, we reveal the negligibly small dependency of beam peak frequency on the elastic constant and discuss free energy's role in accounting for this behaviour. The findings clearly demonstrate that active fluids can impose an oscillatory motion on flexible bodies, which might be used as a novel method for measuring the critical properties of active nematics.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3