Development and modeling of a new ionogel based actuator

Author:

Wang Zhipeng1,He Bin2,Liu Xinhua3,Wang Qigang3

Affiliation:

1. School of Mechanical Engineering, Tongji University, Shanghai, China

2. School of Electronics and Information Engineering, Tongji University, China

3. School of Chemical Science and Engineering, Tongji University, China

Abstract

Ionic electroactive polymer actuators are expected to be one of the most promising driving mechanisms in the future due to their extraordinary features such as their lightweight, flexibility, and low-energy consumption. Traditional ionic electroactive polymer actuators for example, ionic-polymer metal composites have a problem with durability in open air due to the evaporation of water contained in the polymer electrolytes, resulting in a corresponding loss of performance. Electrolysis of the water at relatively low operating voltages may cause deterioration of these materials. Ionic liquids are more thermally and electrochemically stable than water, with unique advantages including negligible volatility, low melting point and high ionic conductivity, therefore they can be used in the application of ionic electroactive polymer actuators. In this work, a new ionic electroactive polymer actuator based on ionogel is developed, which can be operated at low driving voltage with high electrochemical stability. In order to investigate the actuation mechanism of the actuator, a general model consisting of an equivalent electrical circuit, an electromechanical coupling term and a mechanical beam model is built up to characterize its interrelated electrical, mechanical, and chemical properties. This model explains the relationship between input voltage and bending displacement of the actuator. Theoretical and experimental results are demonstrated and documented to validate the conclusion that the model can effectively predict the actuation response of the material. The geometric scalability of the model is also investigated, giving support to the design of the soft mechanism based on ionogel.

Funder

Fundamental Research Funds for the Central Universities

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances in smart materials soft actuators on mechanisms, fabrication, materials, and multifaceted applications: A review;Journal of Thermoplastic Composite Materials;2024-04-22

2. Flexible Actuators Based on Conductive Polymer Ionogels and Their Electromechanical Modeling;Polymers;2023-11-22

3. Electrochemical devices | Electrochemical sensors and actuators;Reference Module in Chemistry, Molecular Sciences and Chemical Engineering;2023

4. Solid‐State Iontronic Devices: Mechanisms and Applications;Advanced Materials Technologies;2022-05-03

5. Design of bio-inspired muscle sarcomere structure using a hybrid hydrogel-IPMC actuator;IOP Conference Series: Materials Science and Engineering;2020-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3