Affiliation:
1. School of Mechanical Science and Engineering, Jilin University, Changchun, China
Abstract
To overcome the over-stiffness and the imprecise magneto-electro-elastic coupling effects of finite element model, we presented a cell-based smoothed finite element model to more accurately simulate the transient responses of magneto-electro-elastic structures. In the cell-based smoothed finite element model, the gradient smoothing technique was introduced into a magneto-electro-elastic multi-physical-field finite element model. The cell-based smoothed finite element model can achieve a close-to-exact stiffness of the continuum structures which could automatically discrete elements for complicated regions more readily and thus remarkably reduced the numerical errors. In addition, the modified Wilson- θ method was presented for solving the motion equation of magneto-electro-elastic structures. Several numerical examples were investigated and exhibited that the cell-based smoothed finite element model could receive more accurate and reliable simulation results than the standard finite element model. Besides, the cell-based smoothed finite element model was employed to calculate transient responses of magneto-electro-elastic sensor and typical micro-electro-mechanical systems–based magneto-electro-elastic energy harvester. Therefore, the cell-based smoothed finite element model can be adopted to tackle the practical magneto-electro-elastic problems such as smart vibration transducers, magnetic field sensors, and energy harvester devices in intelligent magneto-electro-elastic structures systems.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Uinversities
Jilin Provincial Department of Science and Technology Fund Project
Subject
Mechanical Engineering,General Materials Science
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献