Affiliation:
1. Faculty of Mechanical Engineering, Sahand University of Technology, Tabriz, Iran
Abstract
In this article, the static bending response of the functionally graded piezoelectric material plate is investigated based on the first-order shear deformation plate theory (FSDT) under mechanical, electrical, and thermal loads using finite element method. All mechanical, thermal, and piezoelectric properties, except Poisson’s ratio, obey the power law distribution through the thickness. The effects of different volume fraction index, thickness, and various loading conditions are studied on the deflection of functionally graded piezoelectric material plate. The deflection of functionally graded piezoelectric material plate under thermal and electrical loadings versus power law index has been obtained. It is inferred that the correlations between the deflection and the power law index are completely different in the mechanical and thermal loadings, which can be used to design structures in actuator or sensor state. By considering the variation of deflection versus power law index, the proper operation point of the structure can be selected based on the sensor or actuator behavior of the plate.
Subject
Mechanical Engineering,General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献