Computational modeling of sigmoid functionally graded material (SFGM) plate

Author:

Sharma Jai KumarORCID,Kumar Sateesh,Kumar Nishant,Hasnain S M MozammilORCID,Pandey ShatrudhanORCID,Deifalla Ahmed Farouk,Ragab Adham E

Abstract

Abstract The first-order shear deformation theory (FSDT) was used to explore the natural frequency response of functionally graded piezoelectric plates subjected to static electrical and mechanical strain in this present study. A monomorph model for a functionally graded piezoelectric plate with material properties that change according to sigmoid law with respect to plate thickness has been considered. A three-dimensional finite element model with a free tetrahedral element mesh was created using COMSOL 4.2 Multiphysics® software, with each node having three degrees of freedom. Variations in the FGPM plate’s free vibration boundary conditions, composition, and geometry have all been investigated. In free vibration analysis, non-dimensional natural frequency of FGPM plate initially decreasing considerably and then remaining almost constant with the increase in volume fraction index when material property graded by power law. When material properties are varied by sigmoid law, with an increase in volume fraction index, the non-dimensional natural frequency of FGPM plates remains virtually constant. FGPM plates have a lower non-dimensional natural frequency if the thickness to width ratio is greater. Non-dimensional natural frequencies of Clamped-Clamped FGPM plates (C–C–C–C) are greater compared to Clamped-Free FGPM (C–F–C–F) and Simply Supported Free FGPM (S–F–S–F).

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3