Single-double chains micromechanical model and experimental verification of MR fluids with MWCNTs/GO composites coated ferromagnetic particles

Author:

Xu Zhao-Dong1ORCID,Sun Chun-Li2

Affiliation:

1. Key Laboratory of C&PC Structures of the Ministry of Education, Southeast University, Nanjing, China

2. Architects and Engineering Co., Ltd of Southeast University, Nanjing, China

Abstract

Magnetorheological (MR) fluid is a typical intelligent material which is widely adopted in the mitigation of civil engineering structures, and it is normally composed of nano-sized or micro-sized iron particles, carrier fluids and additives. Because of the complexity of its composition, it is one of the research hotspot to propose a micromechanical model which can effectively describe the micromorphological transformation as well as characteristics of MR fluids. In this study, a single-double chains micromechanical model of MR fluids is proposed by taking into consideration of the influence of volume fraction and magnetic induction on the microstructure evolution of MR fluids based on the coupled field as well as magnetic dipole theory. Additionally, the shear yield stress test of the self-prepared MR fluids with multi-wall carbon nanotubes(MWCNTs) and graphene oxide (GO) composites coated ferromagnetic particles is carried out by MCR302 rotational rheometer and the results have been compared with the theoretical values of the single-double chains micromechanical model to verify the effectiveness and accuracy of the proposed model.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3