Affiliation:
1. The State Key Laboratory of Bioelectronics, Jiangsu Key Lab of Remote Measurement and Control, School of Instrument Science and Engineering, Southeast University, Nanjing, P.R. China
Abstract
Under the same excitation, the multi-drum magnetorheological brake has a nonuniform distribution of flux density over fluid gaps. Each fluid gap has its own flux density and shear area. Therefore, the number of drums and the fluid gap selection in optimization are two important parameters to be considered in a multi-drum brake design. When a fluid gap is selected in optimization, the brake is optimized to reach the maximum required flux density over this gap. This article focuses on evaluating the influence of these two parameters on the performance of the multi-drum brake. According to the number of drums and the fluid gap selection in optimization, the brakes were marked and optimized via finite element analysis. After all optimal designs were obtained, the performance in terms of torque, volume, mass, and power consumption as well as the torque–volume, torque–mass, and torque–power ratios were calculated and compared. Based on the evaluation results, suggestions on the number of drums and the fluid gap selection in optimization are given.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献