Affiliation:
1. Department of Aerospace Engineering, University of Maryland, College Park, MD, 20742 USA
2. InnoVital Systems Inc., Beltsville, MD, 20705 USA
Abstract
Pneumatic artificial muscles are actuators known for their low weight, high specific force, and natural compliance. Employed in antagonistic schemes, these actuators closely mimic biological muscle pairs, resulting in applications for humanoid and other bio-inspired robotic systems. Such systems require precise actuator modeling and control in order to achieve high performance. In the present study, refinements are introduced to an existing model of pneumatic artificial muscle force-contraction behavior. The force-balance modeling approach is modified to include the effects of non-constant bladder thickness and up to a fourth-order polynomial stress–strain relationship is adopted in order to accurately capture nonlinear pneumatic artificial muscle force behavior in contraction and extension. Moreover, the polynomial coefficients of the stress–strain relationship are constrained to vary linearly with pressure, improving the ability to predict behavior at untested pressure levels while preserving model accuracy at tested pressure levels. Lastly, a detailed geometric model is applied to improve force predictions, particularly during pneumatic artificial muscle extension. By modeling the deformation shape of the actuator ends as sections of an elliptic toroid, pneumatic artificial muscle force predictions as a function of strain are improved. These modeling improvements combine to enable enhanced model-based control in pneumatic artificial muscle actuator applications.
Subject
Mechanical Engineering,General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献