A hybrid flow energy harvester using combined piezoelectric and electromagnetic transductions for pipeline network monitoring

Author:

Rahman Wahad Ur1ORCID,Khan Farid Ullah1ORCID

Affiliation:

1. Department of Mechatronics Engineering, University of Engineering & Technology Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan

Abstract

An energy harvester that employs both electromagnetic and piezoelectric effects to convert fluid flow energy in the pipeline into electrical energy for powering wireless sensor nodes (WSNs) of the pipeline condition monitoring system has been developed. The devised hybrid energy harvester comprised a unimorph circular piezoelectric plate fixed in a T-joint, three stacked magnets attached at the middle of the piezoelectric plate, and an adjustable coil holder holding a wound coil. Experimental results of the developed prototype depict that it can produce a maximum load RMS voltage of 3.36 V with the piezoelectric part at 27 kΩ of optimal load resistance and 286 mV from the electromagnetic part at 335 Ω of optimum load resistance. Moreover, at 2.9 kPa flow pressure amplitude and 11.08 l/s flow rate, a maximum load power of 418 µW from the piezoelectric portion and 244 µW with the electromagnetic portion is produced. Upon integrating the harvester with a rectifier circuit, an open circuit DC voltage of 9.4 and 3.32 V are generated with piezoelectric and electromagnetic parts, respectively. Furthermore, under the same fluid flow condition, the piezoelectric part produces 404 µW DC power at 92 kΩ of optimum load resistance, while the electromagnetic portion produces 163 µW DC power at 10 kΩ of optimum load resistance. The developed harvester is also utilized to recharge a 4.8 V power bank from 1.11 to 4.2 V in 210 min. Moreover, it is also integrated with a pipeline condition monitoring system to power a WSN, a controller, and relevant circuitry.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3