Magnetorheological semi-active shock mitigation control. Part I: numerical analysis and preliminary tests

Author:

Li Weihan12ORCID,Bai Xianxu “Frank”123ORCID,Jiang Ping12,Yuan Ling12,Liu Hui3,Gao Pu3ORCID,Zhu Anding12,Pan Jiabao4ORCID

Affiliation:

1. Engineering Research Center for Intelligent Transportation and Cooperative Vehicle-Infrastructure of Anhui Province, Hefei University of Technology, Hefei, China

2. Laboratory for Adaptive Structures and Intelligent Systems (LASIS), Department of Vehicle Engineering, Hefei University of Technology, Hefei, China

3. School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China

4. School of Mechanical Engineering, Anhui Polytechnic University, Wuhu, China

Abstract

Minimizing shock loads transmitted to sensitive structures or equipment is the objective of shock mitigation control. The core of shock mitigation control using magnetorheological (MR) energy absorber (EA) to minimize impact load is to make full use of the piston stroke of MREA so as to achieve “soft-landing.” The key lies in the precise description of the hysteresis of MREA and the shock mitigation control method. In this part, a single-degree-of-freedom (SDOF) shock mitigation control system using MREA is established, and the corresponding dynamic model and drop-induced shock mitigation test system are established. Based on the optimal Bi number control method and constant force control theory, feedforward controllers featuring resistor-capacitor (RC) operator-based hysteresis model and Bingham model are established to realize “soft-landing” in sequence. Specific performance evaluation indexes for shock mitigation control systems, that is, average velocity change rate (AVCR) and velocity-acceleration conversion ratio (V-ACR), are proposed. The effectiveness of shock mitigation control methods with different models on the MREA-based shock mitigation control system in profiles of simulation and tests are compared and analyzed.

Funder

National Natural Science Foundation of China

Innovation Project of New Energy Vehicle and Intelligent Connected Vehicle of Anhui Province

Key Research and Development Projects in Anhui Province

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3