Design, structure analysis and shock control of aircraft landing gear system with MR damper

Author:

Kang Byung-Hyuk,Choi Seung-BokORCID

Abstract

Abstract This study proposes a new magneto-rheological aircraft main landing gear (MRAMLG) system and comprehensively treats from a mathematical modelling to drop testing for the evaluation of the landing efficiency. A mathematical model is formulated based on specifications and requirements of existing small aircraft Oleo type landing gear system. To ensure structural stability of the landing gear components such as main trust, column and trunnion, a transient structural analysis is carried out using the finite element method (FEM) and a fatigue life is analysed based on empirical formulas and the rainflow-counting (RC) algorithm. Subsequently, a novel controller is formulated to enhance the landing efficiency by integrating the time delay model and 3-stage hysteresis regulator. In the synthesis of the controller, a desired force model based on the energy law is added to accurately track the desired yield stress needed for the desired field-dependent force. In this work, the proposed control algorithm is named as the model-based force-tracking (MBFT) controller. To evaluate the landing efficiency or shock struct efficiency (SSE) of the proposed MRAMLG, an experimental apparatus for drop test is designed and manufactured by considering a dummy (sprung) mass of 640–720 kg at the maximum sink speed of 3 m s−1. The sink speed represents the rate of descent of the MRAMLG’s tire just before it touches the ground. It is demonstrated from simulation and experiment that the SSE with the MBFT controller is higher than 83% across various landing conditions with different sprung mass and sink speed, while the conventional controllers, proportional-integral and skyhook, compared to MBFT, do not show consistent performance depending on the sprung mass and sink speed.

Funder

MOTIE, Korea

Ministry of Trade, Industry & Energy

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3