Hardware-in-the-loop dynamic load emulation of robotic systems actuated by fluidic artificial muscles

Author:

Mazzoleni Nicholas1ORCID,Bryant Matthew1

Affiliation:

1. Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA

Abstract

Hardware-in-the-loop (HIL) testing is a popular control system testing method because it bridges the gap between modeling/simulation and experiments. Instead of designing a full hardware-based experiment to validate the results of a simulation, the plant hardware can be replaced with an emulator device that responds to exogenous inputs and effectively emulates the dynamic behavior of a system. This approach can be more cost-effective and modular, since the emulated plant system can be modeled in a simulation environment, implemented on a simplified piece of hardware and changed quickly without having to fabricate new parts. This paper develops the hardware and control scheme for a certain type of HIL device called a dynamic load emulator that consists of a 1-DOF linear hydraulic dynamometer equipped with in-line sensing to measure both its own position and the force exerted on it by a device-under-test. This measured force is passed to a real-time model of the emulated dynamic system. The model outputs the emulated system position, and a closed-loop controller is used to emulate this position. The emulator controller incorporates both model-based feedforward and standard feedback PI control. This paper characterizes the dynamometer-based dynamic load emulator and its controller, determining its hardware limitations and validating its capabilities when experiencing a force input from a linear spring with known parameters. Additionally, this paper demonstrates the ability of the emulator to represent the dynamics of a 1-DOF robotic joint when actuated by a pair of fluidic artificial muscles (FAMs). The primary contribution of this work is to allow for more comprehensive testing of FAM configurations, topologies, and controllers for a wide range of parameters, because the same hardware can be used to emulate multiple systems. As a result, this work will lead to more cost-effective, time-efficient, and energy-efficient designs of robotic systems and the FAMs used to actuate them.

Funder

Division of Graduate Education

Division of Civil, Mechanical and Manufacturing Innovation

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3