Quantifying chaos in the atmosphere

Author:

Washington Richard1

Affiliation:

1. School of Geography, University of Oxford, Mansfield Road, Oxford OX1 3TB, UK

Abstract

The atmosphere is known to be forced by a variety of energy sources, including radiation and heat fluxes emanating from the boundary layer associated with sea-surface temperature anomalies and land-surface features. The atmosphere is also subject to internal variability which is essentially unforced and is thought to be a basic characteristic of fluids. Whereas much work has been done in quantifying the links between external forcing of the atmosphere and its long-term response as well as the influence of boundary layer forcing in determining organized, large-scale modes of planetary-scale circulation, less is known about the importance of internal variability or chaos in determining the evolution of weather and climate. General circulation models (GCMs) now provide for this possibility. Multiple evolutions of the climate system may be computed in GCM simulations. Where these simulations are identical except for the conditions by which the model is initialized, the degree of departure in the evolution of climate from one model run to the next corresponds precisely to the degree of internal variability or chaos present in the model atmosphere. A methodology for quantifying this chaotic forcing is considered and is applied to century-long integrations of the UK Meteorological Office model HADAM2A.

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3