Biogeomorphic effects of woody vegetation on bedrock streams

Author:

Jerin Tasnuba1ORCID

Affiliation:

1. Earth Surface Systems Program, University of Kentucky, USA

Abstract

The dynamic interactions between fluvial processes and vegetation vary in different environments and are uncertain in bedrock settings. Bedrock streams are much less studied than alluvial in all aspects, and in many respects act in qualitatively different ways. This research seeks to fill this lacuna by studying bedrock streams from a biogeomorphic perspective. It aims to identify the impacts of woody vegetation that may be common to fluvial systems and rocky hillslopes in general, or that may be unique to bedrock channels. A review of the existing literature on biogeomorphology – mostly fluvial and rocky hillslope environments – was carried out, and field examples of biogeomorphic impacts (BGIs) associated with fluvial systems of various bedrock environments were then examined to complement the review. Results indicate that bedrock streams exhibit both shared and highly concentrated BGIs in relation to alluvial streams and rocky hillslopes. Bedrock streams display a bioprotective geomorphic form – root banks (when the root itself forms the stream bank) – which is distinctive, but not exclusive to this setting. On the other hand, shared biogeomorphic impacts with alluvial streams include sediment and wood trapping, and bar and island development and stabilization (i.e. bioconstruction/modification and protection). Shared impacts with rocky hillslopes also include bioprotection, as well as displacement of bedrock due to root and trunk growth, and bedrock mining caused by tree uprooting (i.e. bioweathering and erosion). Two BGI triangles were developed to graphically display these relationships. Finally, this paper concludes that bedrock streams exhibit some BGIs that also occur in either alluvial channels or on rocky hillslopes. Therefore, no BGIs were identified that are absolutely unique to bedrock fluvial environments.

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3