Affiliation:
1. Earth Surface Processes Research Group, Department of Geography and Earth Sciences Aberystwyth University Wales UK
2. E.L. Cord Luminescence Laboratory, Division of Earth and Ecosystem Science Desert Research Institute Reno Nevada USA
3. Institute for Water Studies, Department of Earth Sciences University of the Western Cape Bellville Western Cape South Africa
4. BLAST Vredefort Dome Tours, Otters Haunt Parys South Africa
Abstract
AbstractPrevious research on mixed bedrock‐alluvial anabranching rivers has documented how alluvial islands commonly grow under vegetation influences atop slowly eroding bedrock templates, but timescales of island dynamics remain poorly constrained. We focus on the Vaal River near Parys, South Africa, and combine field investigations, aerial image analyses and optically stimulated luminescence (OSL) dating to establish timescales of initiation, growth and erosion for nine bedrock‐cored, tree‐covered, alluvial islands. For each island, two OSL samples were collected in vertical succession from sand‐rich exposures up to 4 m in thickness to establish minimum ages for island initiation (~1802 to 243 years) and to estimate local vertical aggradation rates (~0.20 to 1.8 cm year−1). The diachronous lower ages and lack of systematic upstream‐downstream trend in island age support an interpretation of patchwork initiation, growth, and erosion of islands throughout the late Holocene. Following island initiation, vertical island aggradation occurs in association with establishment of reeds, shrubs and trees, but erosion of island margins or dissection by cross‐cutting channels also can occur. Observations during and after recent large floods (peak discharges >3000 m3 s−1) provide further insights into island dynamics, including the influence of exotic trees (e.g., Eucalyptus spp.) that have colonised many islands in the postcolonial era (last ~150 years). Our findings extend previous conceptual models by constraining timescales of island dynamics and providing new insights into island stability and longevity in mixed bedrock‐alluvial anabranching rivers. Improved communication of findings regarding island geomorphology, ecology and stability can benefit local community engagement, geo/eco‐tourism and education activities, and land use planning.
Funder
National Science Foundation of Sri Lanka
Aberystwyth University
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Special issue: Fluvial biogeomorphology;River Research and Applications;2024-07