An illustrated introduction to general geomorphometry

Author:

Florinsky Igor V1

Affiliation:

1. Institute of Mathematical Problems of Biology, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Russia

Abstract

Geomorphometry is widely used to solve various multiscale geoscientific problems. For the successful application of geomorphometric methods, a researcher should know the basic mathematical concepts of geomorphometry and be aware of the system of morphometric variables, as well as understand their physical, mathematical and geographical meanings. This paper reviews the basic mathematical concepts of general geomorphometry. First, we discuss the notion of the topographic surface and its limitations. Second, we present definitions, formulae and meanings for four main groups of morphometric variables, such as local, non-local, two-field specific and combined topographic attributes, and we review the following 29 fundamental morphometric variables: slope, aspect, northwardness, eastwardness, plan curvature, horizontal curvature, vertical curvature, difference curvature, horizontal excess curvature, vertical excess curvature, accumulation curvature, ring curvature, minimal curvature, maximal curvature, mean curvature, Gaussian curvature, unsphericity curvature, rotor, Laplacian, shape index, curvedness, horizontal curvature deflection, vertical curvature deflection, catchment area, dispersive area, reflectance, insolation, topographic index and stream power index. For illustrations, we use a digital elevation model (DEM) of Mount Ararat, extracted from the Shuttle Radar Topography Mission (SRTM) 1-arc-second DEM. The DEM was treated by a spectral analytical method. Finally, we briefly discuss the main paradox of general geomorphometry associated with the smoothness of the topographic surface and the non-smoothness of the real topography; application of morphometric variables; statistical aspects of geomorphometric modelling, including relationships between morphometric variables and roughness indices; and some pending problems of general geomorphometry (i.e. analysis of inner surfaces of caves, analytical description of non-local attributes and structural lines, as well as modelling on a triaxial ellipsoid). The paper can be used as a reference guide on general geomorphometry.

Funder

Russian Foundation for Basic Research

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3