Author:
Sun Zhuo,Li Jiangbo,Guo Ruiqiang,Zhang Yiran,Zhu Gang,Yang Xiaoliang
Publisher
Springer Science and Business Media LLC
Reference48 articles.
1. Allard, D., A. Comunian, and P. Renard, 2012: Probability aggregation methods in geoscience. Math. Geosci., 44, 545–581, doi: https://doi.org/10.1007/s11004-012-9396-3.
2. Baran, S., and S. Lerch, 2016: Mixture EMOS model for calibrating ensemble forecasts of wind speed. Environmetrics, 27, 116–130, doi: https://doi.org/10.1002/env.2380.
3. Bonavita, M., R. Arcucci, A. Carrassi, et al., 2021: Machine learning for Earth system observation and prediction. Bull. Amer. Meteor. Soc., 102, E710–E716, doi: https://doi.org/10.1175/BAMS-D-20-0307.1.
4. Cesa-Bianchi, N., and G. Lugosi, 2006: Prediction, Learning, and Games. Cambridge University Press, Cambridge, 394 pp, doi: https://doi.org/10.1017/CBO9780511546921.
5. Chen, M. X., J. N. Quan, S. G. Miao, et al., 2018: Enhanced weather research and forecasting in support of the Beijing 2022 Winter Olympic and Paralympic Games. WMO Bull., 67, 58–61.