A classification for macroscopic charcoal morphologies found in Holocene lacustrine sediments

Author:

Mustaphi Colin J. Courtney1,Pisaric Michael F.J.2

Affiliation:

1. Carleton University, Canada, and University of York, UK

2. Brock University, Canada

Abstract

Macroscopic charcoal analysis of lake sediment stratigraphies is a widely used approach to reconstruct past biomass burning patterns of ecosystems. The development of fire records often relies on a single quantification method of charcoal in a sediment subsample; however, recent studies have shown that additional paleoecological information can be obtained by classifying charcoal morphologies. The morphologies and diagnostic features of charcoal yields information about fuel sources, fire type, and charcoal taphonomy, and can aid in calibrating sediment records to known historical fires. This additional information enhances paleoecological inferences by providing more paleoenvironmental information than studies of total charcoal as the only metric. Here we present a classification of 27 macroscopic charcoal morphologies observed in Holocene sediments of lakes located in the mixed-conifer forests of southeastern British Columbia, Canada. This classification system builds on other morphological classifications that have been previously utilized, but is more inclusive of the morphological variability observed and is flexible to modification for use when applied to other study settings. The morphological classification presented here was developed following the observation of >100,000 macroscopic charcoal fragments >150 µm. This paper focuses on the observed morphological classes, their identification, potential fuel sources, and the morphotype assemblage stratigraphy from one site as an example. The charcoal assemblages varied throughout the mid-to-late Holocene contemporaneously with known regional scale hydroclimatic changes in British Columbia. Major changes in fire frequency were also concomitant with morphotype assemblage changes. Future work focusing on linking fuel types with charcoal morphotypes, post-fire observations of charcoal taphonomy, and the analysis of multiple attribute charcoal data sets from a variety of ecosystems will improve our understanding of biomass burning and long-term fire ecology.

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3