A new relationship between grain size and fall (settling) velocity in air

Author:

Farrell Eugene J.1,Sherman Douglas J.2

Affiliation:

1. National University Ireland Galway, Republic of Ireland

2. University of Alabama, USA

Abstract

The fall velocity of natural sand grains is a fundamental attribute of sediment transport in fluid environments where particles may become partially or fully suspended. Several formulae have been proposed to calculate the fall velocity of particles in air, but there is considerable uncertainty about which is the most accurate or appropriate for a given set of environmental conditions. Five experiments that reported observations of fall velocity of different types of particles in air are described, evaluated, and compared. The experiment data were quality-controlled using four criteria: (1) particles had to have sufficient drop heights to attain their terminal fall velocity; (2) particles had to be in the range of sand sizes; (3) data identified as being problematic by the original authors were removed; and (4) particles comprise natural, irregular shaped sediments. The quality-controlled data were aggregated and analyzed using linear regression to obtain a relationship between grain size ( d, in mm) and fall velocity ( w0, in ms-1): [Formula: see text]. This is a statistically strong relationship with a coefficient of determination of 0.89 ( p < 0.001). This relationship can be regarded as a universal fall velocity model for natural, sand-sized particles falling through a static column of air. In terms of predictive analyses, our heuristic method outperforms alternative formulae and yields a better fit to the experimental data over the full range of sand sizes.

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3