Saltation‐Induced Dust Emission of Dust Devils in the Convective Boundary Layer—An LES Study on the Meter Scale

Author:

Klamt J.12ORCID,Giersch S.1ORCID,Raasch S.1

Affiliation:

1. Institute of Meteorology and Climatology Leibniz University Hannover Hannover Germany

2. Deutsches Zentrum für Luft‐ und Raumfahrt Institut für Physik der Atmosphäre Oberpfaffenhofen Germany

Abstract

AbstractDust devils are vertically oriented, columnar vortices that form within the atmospheric convective boundary layer (CBL) of dry regions. They are able to lift a sufficient amount of soil particles including dust to become visible and are considered as a potentially important dust source for the atmosphere. Mineral dust, a key component of atmospheric aerosols, influences the climate by affecting the radiation budget and cloud formation. Current estimates of the contribution of dust devils to the global, regional, and local dust release vary considerably from less than 1% to more than 50%. To address this uncertainty, we perform the highest resolved large‐eddy simulation (LES) study on dust emission in the CBL to date, using the PALM model system and the saltation‐based Air Force Weather Agency (AFWA) dust emission scheme. Our results show that under desert‐like conditions, dust devils are responsible for an average of 5% of regional dust emissions, with temporary maxima of up to 15%. This contrasts with previous measurement‐based (>35%) and LES‐based estimates (∼0.1%). Local emissions of dust devils (up to 10 mg m−2 s−1) are 1–3 orders of magnitude higher than the emission in the surroundings. This makes dust devils important for air quality and visibility. Additionally, our study reveals previously unknown large‐scale convective dust emission patterns. These patterns are tied to the CBL's cellular flow structure and are the main cause of dust release. Contrary to other studies, our findings clarify the important role of saltation‐induced dust emission.

Funder

German Research Foundation

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3