High-resolution, low-altitude aerial photography in physical geography

Author:

Barrell Jeffrey1,Grant Jon

Affiliation:

1. Department of Oceanography, Dalhousie University, Canada

Abstract

Intertidal landscapes are highly complex and dynamic habitats that exhibit variability over a range of spatial and temporal scales. The spatial arrangement of structure-forming biogenic features such as seagrasses and bivalves influences ecosystem function and the provision of important ecosystem services, though quantification and monitoring of intertidal landscape structure has been hindered by challenges collecting spatial data in the coastal zone. In this study, an intertidal landscape mosaic of eelgrass ( Zostera marina) and blue mussels ( Mytilus edulis) was observed using low-altitude aerial photography from a balloon-mounted digital camera platform. Imagery representing seagrass-bivalve landscape structure was classified and analysed using multiple metrics of landscape composition and configuration at the patch scale and the landscape scale. Patch-scale imagery was compared to a previously collected dataset in order to track temporal changes in seagrass patch metrics over a 26-month period. Seagrass and bivalve patches exhibited distinct spatial patterning at different spatial scales. At the patch scale, the change in seagrass metrics was consistent with patch border expansion at the expense of patch density and integrity. These methods demonstrate a novel approach for collecting high-resolution spatial data that could also be valuable to physical geographers dealing with similar fine-scale landscapes. The application of spatial metrics at multiple spatial scales quantified elements of the configuration and composition of a seagrass-bivalve habitat mosaic and allowed for the tracking of patch metrics through time to depict landscape change. Continued development of landscape metrics within intertidal habitats will increase understanding of the ecological function of these areas with benefits to management and monitoring of ecosystem health.

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3