A methodology for monitoring and modeling of high altitude Alpine catchments

Author:

Soncini A1,Bocchiola D2,Azzoni RS3,Diolaiuti G3

Affiliation:

1. Politecnico di Milano, Milano, Italy

2. Politecnico di Milano, Milano, Italy; EVK2CNR Committee of Italy, Bergamo, Italy

3. Università degli Studi di Milano, Milano, Italy

Abstract

Hydrological monitoring and modeling of high altitude Alpine catchments is of paramount importance. This is difficult, however, given the complex logistics of field campaigns and the need for long-term data. Here, we present a method for long term monitoring of high altitude catchments, which we tested within the Alps of Italy. This includes i) extensive gathering of climate data and hydrological fluxes, ii) high altitude field campaigns, and iii) robust physically based glacio-hydrological modeling, providing full account of ice flow, ice and snow ablation, and stream flows. We present an application of this method based on six years (2009–2014) of field monitoring in the Dosdè catchment, in the Italian Alps (17 km2, average altitude 2858 masl, outlet 2133 masl), nesting 1.90 km2 of glaciers. We demonstrate that i) high altitude Alpine catchments can be monitored in spite of geographical complexity, and ii) a data based approach delivers accurate stream flow estimates and improves our knowledge of flow components in the high altitudes. We then provide some estimates of the recent glaciers’ dynamics, and water resources from this high-altitude catchment, paradigmatic of the recent cryospheric evolution in the Alps of Italy. We estimated an average ice mass loss nearby −1.76E8 m3yr−1, i.e. −20% of the ice mass in 2009, possibly pointing to accelerated glaciers’ down wasting. Instream discharges increased (+0.12 m3s−1y−1); however, this requires further monitoring. We then benchmark our findings against recent studies in the Alps, and other glacierized areas worldwide, displaying similarities in present glaciers’ dynamics. We suggest that our robust, yet flexible approach can be used for glacio-hydrological investigation in Alpine (and generally mountain) rivers, and for conjectures of potential future hydrological cycle under climate scenarios.

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3