Techniques for quantifying the accuracy of gridded elevation models and for mapping uncertainty in digital terrain analysis

Author:

Gonga-Saholiariliva N.1,Gunnell Y.2,Petit C.3,Mering C.4

Affiliation:

1. Université Paris Diderot, France; TTI Production, France

2. Université Lumière Lyon 2, France

3. Université de Nice, France

4. Université Paris Diderot, France

Abstract

We first provide a critical review of statistical procedures employed in the literature for testing uncertainty in digital terrain analysis, then focus on several aspects of spatial autocorrelation that have been neglected in the analysis of gridded elevation data. When applied to first derivatives of elevation such as topographic slope, a spatial approach using Moran’s I and the LISA (Local Indicator of Spatial Association) allows: (1) georeferenced data patterns to be generated; (2) error hot- and coldspots to be located; and (3) error propagation during DEM manipulation to be evaluated. In a worked example focusing on the Wasatch mountain front, Utah, we analyse the relative advantages of six DEMs resulting from different acquisition modes (airborne, optical, radar, or composite): the LiDAR (2 m), CODEM (5 m), NED10 (10 m), ASTER DEM (15 m) and GDEM (30 m), and SRTM (90 m). The example shows that (apart from the LiDAR) the NED10, which is generated from composite data sources, is the least error-ridden DEM for that region. Knowing error magnitudes and where errors are located determines where corrections to elevation are required in order to minimize error accumulation or propagation, and clarifies how they might affect expert judgement in environmental decisions. Ground resolution issues can subsequently be addressed with greater confidence by resampling the preferred grid to terrain resolutions suited to the landscape attributes of interest. Source product testing is an essential yet often neglected part of DEM analysis, with many practical applications in hydrological modelling, for predictions of slope- to catchment-scale mass sediment flux, or for the assessment of slope stability thresholds.

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3