Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients

Author:

Franklin Janet1

Affiliation:

1. Department of Geography, San Diego State University, San Diego, CA 92182, USA

Abstract

Predictive vegetation mapping can be defined as predicting the geographic distribution of the vegetation composition across a landscape from mapped environmental variables. Comput erized predictive vegetation mapping is made possible by the availability of digital maps of topography and other environmental variables such as soils, geology and climate variables, and geographic information system software for manipulating these data. Especially important to predictive vegetation mapping are interpolated climatic variables related to physiological tolerances, and topographic variables, derived from digital elevation grids, related to site energy and moisture balance. Predictive vegetation mapping is founded in ecological niche theory and gradient analysis, and driven by the need to map vegetation patterns over large areas for resource conservation planning, and to predict the effects of environmental change on vegetation distributions. Predictive vegetation mapping has advanced over the past two decades especially in conjunction with the development of remote sensing-based vegetation mapping and digital geographic information analysis. A number of statistical and, more recently, machine-learning methods have been used to develop and implement predictive vegetation models.

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3