Modeling a hot, dry future: Substantial range reductions in suitable environment projected under climate change for a semiarid riparian predator guild

Author:

Blais Brian R.ORCID,Koprowski John L.

Abstract

An understanding of species-environmental relationships is invaluable for effective conservation and management under anthropogenic climate change, especially for biodiversity hotspots such as riparian habitats. Species distribution models (SDMs) assess present species-environmental relationships which can project potential suitable environments through space and time. An understanding of environmental factors associated with distributions can guide conservation management strategies under a changing climate. We generated 260 ensemble SDMs for five species of Thamnophis gartersnakes (n = 347)—an important riparian predator guild—in a semiarid and biogeographically diverse region under impact from climate change (Arizona, United States). We modeled present species-environmental relationships and projected changes to suitable environment under 12 future climate scenarios per species, including the most and least optimistic greenhouse gas emission pathways, through 2100. We found that Thamnophis likely advanced northward since the turn of the 20th century and overwinter temperature and seasonal precipitation best explained present distributions. Future ranges of suitable environment for Thamnophis are projected to decrease by ca. -37.1% on average. We found that species already threatened with extinction or those with warm trailing-edge populations likely face the greatest loss of suitable environment, including near or complete loss of suitable environment. Future climate scenarios suggest an upward advance of suitable environment around montane areas for some low to mid-elevation species, which may create pressures to ascend. The most suitable environmental areas projected here can be used to identify potential safe zones to prioritize conservation refuges, including applicable critical habitat designations. By bounding the climate pathway extremes to, we reduce SDM uncertainties and provide valuable information to help conservation practitioners mitigate climate-induced threats to species. Implementing informed conservation actions is paramount for sustaining biodiversity in important aridland riparian systems as the climate warms and dries.

Publisher

Public Library of Science (PLoS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3