Quaternary environmental change in New Zealand: a review

Author:

Newnham R. M.1,Lowe D. J.2,Williams P. W.3

Affiliation:

1. Department of Geographical Sciences, University of Plymouth, Plymouth PL4 8AA, UK

2. Department of Earth Sciences, University of Waikato, Private Bag 3105, Hamilton, New Zealand

3. Department of Geography, University of Auckland, Private Bag 92019, Auckland, New Zealand

Abstract

The discovery that orbital variations are the driving force behind Quaternary climate change provides an impetus to set local and regional records of environmental change into the global context, a principle that has been strongly embraced by Quaternary scientists working in New Zealand. Their major achievements and significant current initiatives are reviewed here. The importance of the New Zealand Quaternary stems from its geographical context: a climatically sensitive, remote oceanic, southern location spanning 17 degrees of the mid-latitudes; an obliquely convergent plate boundary setting resulting in a high mountain range athwart the prevailing westerlies, active volcanism, a youthful and dynamic landscape, and mountains high enough to maintain glaciers today; and a remarkably short prehistory. The resultant records show marked environmental changes due not only to climatic oscillations but also to vigorous, active tectonism and volcanism. The Taupo Volcanic Zone, containing the world's strongest concentration of youthful rhyolitic volcanoes, has produced at least 10 000 km3of magma in the last 2 Ma. Climatic interpretations of records from marine sediments in the New Zealand region, together with several long sequences of alternating marine and terrestrial sediments, indicate broad synchrony with Northern Hemisphere events (within limitations of dating), although there are differences in detail for shorter-term climatic events. It is not yet certain that glacial advances coincided precisely with those in the Northern Hemisphere or were of similar duration. Late Cainozoic glaciation commenced c. 2.6-2.4 Ma but the record of glacial deposits is fragmentary and poorly dated except for the most recent events. The Last (Otira) Glaciation, from c. 100-10 ka, was characterized by at least five glacial advances including during the Last Glacial Maximum from 25 to 15 ka, when snowlines fell by 600-800 m. New Zealand evidence for cooling during the Younger Dryas stade is equivocal whilst isotopic records from speleothems, and other data, indicate warmer and wetter conditions from 10-7 ka, broadly conforming with records from mid-latitude Northern Hemisphere locations. Future advances will require sampling at shorter timescales, improvements in the accuracy and precision of existing dating methods and the development of new ones, extension of palaeoecological techniques to cover the full potential of new Zealand's diverse biota, and a stronger emphasis on quantification of palaeoclimatic parameters.

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3