Genetic analysis of Octopus cyanea reveals high gene flow in the South‐West Indian Ocean

Author:

Treleven Charles R.1,Kishe Mary A.2,Silas Mathew O.2ORCID,Ngatunga Benjamin P.2,Kuboja Bigeyo N.2,Mgeleka Said S.23,Taylor Amy L.1,Elsmore Megan A. M.1,Healey Amy J. E.1,Sauer Warwick H. H.4,Shaw Paul W.1,McKeown Niall J.1ORCID

Affiliation:

1. Department of Life Sciences Aberystwyth University Aberystwyth UK

2. Fisheries Research Institute (TAFIRI) Dar es Salaam Tanzania

3. Department of Ecology, Environment and Plant Sciences Stockholm University Stockholm Sweden

4. Department of Ichthyology & Fisheries Science Rhodes University Makhanda South Africa

Abstract

AbstractOctopus cyanea (Gray, 1849), abundant in the South‐West Indian Ocean (SWIO), constitutes a vital resource for both subsistence and commercial fisheries. However, despite this socioeconomic importance, and recent indications of overfishing, little is known about the population structure of O. cyanea in the region. To inform sustainable management strategies, this study assessed the spatio‐temporal population structure and genetic variability of O. cyanea at 20 sites in the SWIO (Kenya, Tanzania, Mozambique, Madagascar, Mauritius, Rodrigues, and the Seychelle Islands) by complementary analysis of mitochondrial DNA (mtDNA) noncoding region (NCR) sequences and microsatellite markers. MtDNA analysis revealed a shallow phylogeny across the region, with demographic tests suggesting historic population fluctuations that could be linked to glacial cycles. Contrary to expectations, NCR variation was comparable to other mtDNA regions, indicating that the NCR is not a hypervariable region. Both nuclear and mtDNA marker types revealed a lack of genetic structure compatible with high gene flow throughout the region. As adults are sedentary, this gene flow likely reflects connectivity by paralarval dispersal. All samples reported heterozygote deficits, which, given the overall absence of structure, likely reflect ephemeral larval recruitment variability. Levels of mtDNA and nuclear variability were similar at all locations and congruent with those previously reported for harvested Octopodidae, implying resilience to genetic erosion by drift, providing current stock sizes are maintained. However, as O. cyanea stocks in the SWIO represent a single, highly connected population, fisheries may benefit from additional management measures, such as rotational closures aligned with paralarval ecology and spanning geopolitical boundaries.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3