Affiliation:
1. The University of British Columbia, Canada,
Abstract
Modern geomorphology was founded in the nineteenth century as an exercise of historical interpretation of landscapes. After the mid-twentieth century it dominantly became a quest to understand the processes by which landscapes are modified. This focused attention on the measurement of sediment fluxes on synoptic timescales and on a reductionist, Newtonian programme of construction of low-order theories about those fluxes, largely imported from engineering science. The period also saw the emergence of an applied geomorphology. Toward the end of the twentieth century the subject was dramatically transformed by improved technologies for remote sensing and surveying of Earth’s surface, the advent of personal computation and of large-scale computation, and important developments of absolute dating techniques. These technical innovations in turn promoted recognition of geomorphology as a ‘system science’ and facilitated the reintegration of tectonics into geomorphology, opening the way for a renewed consideration of the history of the landscape. Finally, increasing recognition of the dominance of human agency in contemporary modification of Earth’s terrestrial surface has become a significant theme. Important influences on the continuing development of the subject will include the search for physically sound laws for material fluxes; reconciling geomorphological information and process representations across spatial and temporal scales, in both observation and theory; comprehending complexity in geomorphological processes and landform histories; incorporating the geomorphological role of living organisms, particularly micro-organisms; understanding the role of climate in geomorphology, both in the contemporary changing climate and in the long term; and fully admitting the now dominant role of humans as geomorphic agents. Geomorphology is simultaneously developing in diverse directions: on one hand, it is becoming a more rigorous geophysical science — a significant part of a larger earth science discipline; on another, it is becoming more concerned with human social and economic values, with environmental change, conservation ethics, with the human impact on environment, and with issues of social justice and equity.
Subject
General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development
Reference114 articles.
1. Equilibrium, scale and inheritance in geomorphology
2. Bagnold, R.A. 1941: The physics of blown sand and desert dunes. London: Methuen, 265 pp.
3. Baker, G.S. and Jol, H.M. 2007: Stratigraphic analysis using GPR. GSA Special Paper 432 . Boulder, CO: Geological Society of America, 181 pp.
4. Baulig, H. 1935: The changing sea level. Publication 3. London: Institute of British Geographers, 46 pp. (reprinted 1956).
Cited by
115 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献