Characterization of Active Riverbed Spatiotemporal Dynamics through the Definition of a Framework for Remote Sensing Procedures

Author:

Crivellaro Marta1ORCID,Vitti Alfonso2ORCID,Zolezzi Guido12ORCID,Bertoldi Walter12ORCID

Affiliation:

1. Center Agriculture Food Environment, University of Trento, 38098 San Michele all’Adige, Italy

2. Department of Civil, Environmental and Mechanical Engineering, University of Trento, 38123 Trento, Italy

Abstract

The increasing availability and quality of remote sensing data are changing the methods used in fluvial geomorphology applications, allowing the observation of hydro-morpho-biodynamics processes and their spatial and temporal variations at broader and more refined scales. With the advent of cloud-based computing, it is nowadays possible to reduce data processing time and increase code sharing, facilitating the development of reproducible analyses at regional and global scales. The consolidation of Earth Observation mission data into a single repository such as Google Earth Engine (GEE) offers the opportunity to standardize various methods found in literature, in particular those related to the identification of key geomorphological parameters. This work investigates different computational techniques and timeframes (e.g., seasonal, annual) for the automatic detection of the active river channel and its multi-temporal aggregation, proposing a rational integration of remote sensing tools into river monitoring and management. In particular, we propose a quantitative analysis of different approaches to obtain a synthetic representative image of river corridors, where each pixel is computed as a percentile of the bands (or a combination of bands) of all available images in a given time span. Synthetic images have the advantage of limiting the variability of individual images, thus providing more robust results in terms of the classification of the main components of the riverine ecosystem (sediments, water, and riparian vegetation). We apply the analysis to a set of rivers with analogous bioclimatic conditions and different levels of anthropic pressure, using a combination of Landsat and Sentinel-2 data. The results show that synthetic images derived from multispectral indexes (such as NDVI and MDWI) are more accurate than synthetic images derived from single bands. In addition, different temporal reduction statistics affect the detection of the active channel, and we suggest using the 90th percentile instead of the median to improve the detection of vegetated areas. Individual representative images are then aggregated into multitemporal maps to define a systematic and easily replicable approach for extracting active river corridors and their inherent spatial and temporal dynamics. Finally, the proposed procedure has the potential to be easily implemented and automated as a tool to provide relevant data to river managers.

Funder

VIS (Volontariato Internazionale per lo Sviluppo) and CESVI Onlus within “GREEN coAL-ITion: Eco-sustainable Development for Albanian mountain-countryside natural capital” project

Italian Ministry of Universities and Research

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3