Finite element analysis of lattice designed lumbar interbody cage based on the additive manufacturing

Author:

Bozyiğit Bülent1,Oymak Mehmet Akif2ORCID,Bahçe Erkan2ORCID,Uzunyol Ömer Faruk2

Affiliation:

1. Malatya Gozde Academic Hospital, Malatya, Turkey

2. Department of Mechanical Engineering, Inonu University, Malatya, Turkey

Abstract

Additive manufacturing (AM) methods, which facilitate the production of complex structures with different geometries, have been used in producing interbody cages in recent years. In this study, the effects of Ti6Al4V alloy interbody lattice designed fusion cages between the third and fourth lumbar vertebrae where degenerative disc diseases occur were investigated using the finite element method. Face centered cubic (FCC), body centered cubic (BCC), and diamond structures were selected as the lattice structure suitable for the interbody cage. A kidney shaped interbody lumbar cage was designed. The designated lattice structures were selected by adjusting the cell sizes suitable for the designed geometry, and the mesh configuration was made by the lumbar lattice structure. 400 N Axial force and 7.5 N.m moments were applied to the spine according to lateral bending, flexion, and torsion. 400 N axial force and 7.5 N.m flexion moment is shown high strain and total deformation then lateral bending and torsion on BCC FCC and diamond lattice structured interbody cages. In addition, the effects of lattice structures under high compression forces were investigated by applying 1000 N force to the lattice structures. When von Mises stresses were examined, lower von Mises stress and strains were observed in the BCC structure. However, a lower total deformation was observed in the FCC. Due to the design of the BCC and the diamond structure, it is assumed that bone implant adhesion will increase. In the finite element analysis (FEA), the best results were shown in BCC structures.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Reference47 articles.

1. Lumbar intervertebral disc degeneration associated with axial and radiating low back pain in ageing SPARC-null mice

2. Hanna CJDIII, Varacallo A, M, Lumbar degenerative disk disease. StatPearls, https://www.ncbi.nlm.nih.gov/books/NBK448134/ (2022, accessed 10 December 2022).

3. A Brief Review of the Degenerative Intervertebral Disc Disease

4. Biomechanics of Intervertebral Disk Degeneration

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3