Method of computational design for additive manufacturing of hip endoprosthesis based on basic‐cell concept

Author:

Bolshakov Pavel1ORCID,Kuchumov Alex G.23ORCID,Kharin Nikita45ORCID,Akifyev Kirill4,Statsenko Evgeny6,Silberschmidt Vadim V.7ORCID

Affiliation:

1. Department of Machine Science and Engineering Graphics Tupolev Kazan National Research Technical University Kazan Russia

2. Department of Computational Mathematics, Mechanics and Biomechanics Perm National Research Polytechnic University Perm Russia

3. Laboratory of Mechanics of Biocompatible Materials and Devices Perm National Research Polytechnic University Perm Russia

4. Department of Theoretical Mechanics, N.I. Lobachevsky Institute of Mathematics and Mechanics Kazan Federal University Kazan Russia

5. Institute of Engineering Kazan Federal University Kazan Russia

6. Laboratory of X‐ray Tomography, Institute of Geology and Petroleum Technologies Kazan Federal University Kazan Russia

7. Wolfson School of Mechanical, Electrical and Manufacturing Engineering Loughborough University Leicestershire UK

Abstract

AbstractEndoprosthetic hip replacement is the conventional way to treat osteoarthritis or a fracture of a dysfunctional joint. Different manufacturing methods are employed to create reliable patient‐specific devices with long‐term performance and biocompatibility. Recently, additive manufacturing has become a promising technique for the fabrication of medical devices, because it allows to produce complex samples with various structures of pores. Moreover, the limitations of traditional fabrication methods can be avoided. It is known that a well‐designed porous structure provides a better proliferation of cells, leading to improved bone remodeling. Additionally, porosity can be used to adjust the mechanical properties of designed structures. This makes the design and choice of the structure's basic cell a crucial task. This study focuses on a novel computational method, based on the basic‐cell concept to design a hip endoprosthesis with an unregularly complex structure. A cube with spheroid pores was utilized as a basic cell, with each cell having its own porosity and mechanical properties. A novelty of the suggested method is in its combination of the topology optimization method and the structural design algorithm. Bending and compression cases were analyzed for a cylinder structure and two hip implants. The ability of basic‐cell geometry to influence the structure's stress–strain state was shown. The relative change in the volume of the original structure and the designed cylinder structure was 6.8%. Computational assessments of a stress–strain state using the proposed method and direct modeling were carried out. The volumes of the two types of implants decreased by 9% and 11%, respectively. The maximum von Mises stress was 600 MPa in the initial design. After the algorithm application, it increased to 630 MPa for the first type of implant, while it is not changing in the second type of implant. At the same time, the load‐bearing capacity of the hip endoprostheses was retained. The internal structure of the optimized implants was significantly different from the traditional designs, but better structural integrity is likely to be achieved with less material. Additionally, this method leads to time reduction both for the initial design and its variations. Moreover, it enables to produce medical implants with specific functional structures with an additive manufacturing method avoiding the constraints of traditional technologies.

Publisher

Wiley

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3