Parametric study of patient-specific femoral locking plates based on a combined musculoskeletal multibody dynamics and finite element modeling

Author:

Fan Xunjian1ORCID,Chen Zhenxian2,Jin Zhongmin134,Zhang Qida1,Zhang Xuan2,Peng Yinghu1

Affiliation:

1. State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China

2. Key Laboratory of Road Construction Technology and Equipment of MOE, School of Construction Machinery, Chang’an University, Xi’an, China

3. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, China

4. Institute of Medical and Biological Engineering and School of Mechanical Engineering, University of Leeds, Leeds, UK

Abstract

A combined musculoskeletal multibody dynamics and finite element modeling was performed to investigate the effects of design parameters on the fracture-healing efficiency and the mechanical property of a patient-specific anatomically adjusted femoral locking plate. Specifically, the screw type, the thickness and material of the locking plate, the gap between two femoral fragments (fracture gap) and the distance between bone and plate (interface gap) were evaluated during a human walking. We found that the patient-specific locking plate possessed greater mechanical strength and more efficient fracture healing than the corresponding traditional plate. An optimal patient-specific femoral locking plate would consist of bicortical locking screws, Ti-6Al-4V material and 4.75-mm plate thickness with a fracture gap of 2 mm and an interface gap of 1 mm. The developed patient-specific femoral locking plate based on the patient-specific musculoskeletal mechanical environment was more beneficial to fracture rehabilitation and healing. The patient-specific design method provides an effective research platform for designing and optimizing the patient-specific femoral locking plate under realistic in vivo walking conditions, which can be extended to the design of other implants as well as to other physiological loading conditions related to various daily activities.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3