Radon descriptor-based machine learning using CT images to predict the fat tissue on left atrium in the heart

Author:

Deepa Deepa1,Singh Yashbir12ORCID,Hu Weichih1ORCID,Wang Ming Chen1

Affiliation:

1. Biomedical Engineering, Chung Yuan Christian University, Zhongli, Taoyuan City, Taiwan

2. Mayo Clinic, Rochester, MN, USA

Abstract

Heart disease has a higher fatality rate than any other disease. Increased Atrial fat on the left atrium has been discovered to cause Atrial Fibrillation (AF) in most patients. AF can put one’s life at risk and eventually lead to death. AF might worsen over time; therefore, it is crucial to have an early diagnosis and treatment. To evaluate the left atrium fat tissue pattern using Radon descriptor-based machine learning. This study developed a bridge between the Radon transform framework and machine learning to distinguish two distinct patterns. Motivated by a Radon descriptor-based machine learning approach, the patches of eight patients from CT images of the heart were used and categorized into “epicardial fat tissue” and “nonfat tissue” groups. The 10 feature vectors are extracted from each big patch using Radon descriptors and then fed into a traditional machine learning model. The results show that the proposed methodology discriminates between fat tissues and nonfat tissues clearly. KNN has shown the best performance with 96.77% specificity, 98.28% sensitivity, and 97.50% accuracy. To our knowledge, this study is the first attempt to provide a Radon transform-based machine learning method to distinguish between fat tissue and nonfat tissue on the left atrium. Our proposed research method could be potentially used in advanced interventions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3