Successful use of HTF as a basal fertilization medium during SEcuRe mouse in vitro fertilization

Author:

Wigger MagdalenaORCID,Schneider Marco,Feldmann Anni,Assenmacher Sonja,Zevnik BrankoORCID,Tröder Simon E.ORCID

Abstract

Abstract Objective The ever-increasing number of genetically engineered mouse models highlights the need for efficient archiving and distribution of these lines. Sperm cryopreservation has become the preferred technique for the majority of these models due to its low requirement of costs, time, and experimental animals. Yet, current in vitro fertilization (IVF) protocols either exhibit decreased fertilization efficiency for the most popular C57BL/6 strain, as recently demonstrated by us, or require costly and difficult-to-prepare media, respectively. As a result, we previously developed SEcuRe, a modified IVF protocol with low costs and high fertilization efficiency. The popular basal fertilization medium, Cook’s® proprietary “Research vitro fert” (RVF), used in this protocol has recently been discontinued. As a result, the application of the SEcuRe approach and other IVF protocols employing this medium has been severely limited. Results Here we show that human tubal fluid (HTF), a popular and widely available medium with a known composition, can be used as a basal fertilization medium instead of RVF. Comparison of RVF and HTF during 58 independent SEcuRe IVFs with cryopreserved C57BL/6 sperm revealed equal fertilization and live birth rates. In addition, we demonstrate that HTF has a substantially extended shelf-life by utilizing commercial HTF that was six months past its expiration date, yet did not affect fertilization during IVF or subsequent embryo development. This finding not only increases the economic value of our modified method, but also validates it once more. Our results demonstrate that common, shelf-life extended HTF can be used in SEcuRe IVF in place of now-discontinued RVF medium and ensure the applicability of the method, which we since termed SEcuRe 2.0. Our modified SEcuRe 2.0 strategy will assist researchers to efficiently archive and distribute genetically engineered mouse models in a cost-effective, easily adaptable, and 3R-compliant manner with minimal animal use.

Funder

Deutsche Forschungsgemeinschaft

Universität zu Köln

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3