Comparative analyses of bicyclists and motorcyclists in vehicle collisions focusing on head impact responses

Author:

Wang Xinghua1,Peng Yong1,Yi Shengen2

Affiliation:

1. School of Traffic and Transportation Engineering, Central South University, Changsha, China

2. Research Laboratory of Hepatobiliary Diseases and Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China

Abstract

To investigate the differences of the head impact responses between bicyclists and motorcyclists in vehicle collisions. A series of vehicle–bicycle and vehicle–motorcycle lateral impact simulations on four vehicle types at seven vehicle speeds (30, 35, 40, 45, 50, 55 and 60 km/h) and three two-wheeler moving speeds (5, 7.5 and 10 km/h for bicycle, 10, 12.5 and 15 km/h for motorcycle) were established based on PC-Crash software. To further comprehensively explore the differences, additional impact scenes with other initial conditions, such as impact angle (0, π/3, 2π/3 and π) and impact position (left, middle and right part of vehicle front-end), also were supplemented. And then, extensive comparisons were accomplished with regard to average head peak linear acceleration, average head impact speed, average head peak angular acceleration, average head peak angular speed and head injury severity. The results showed there were prominent differences of kinematics and body postures for bicyclists and motorcyclists even under same impact conditions. The variations of bicyclist head impact responses with the changing of impact conditions were a far cry from that of motorcyclists. The average head peak linear acceleration, average head impact speed and average head peak angular acceleration values were higher for motorcyclists than for bicyclists in most cases, while the bicyclists received greater average head peak angular speed values. And the head injuries of motorcyclists worsened faster with increased vehicle speed. The results may provide even deeper understanding of two-wheeler safety and contribute to improve the public health affected by road traffic accidents.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3