Exploring the Influencing Factors and Formation of the Blind Zone of a Semitrailer Truck in a Right-Turn Collision

Author:

Wang Qingzhou,Sun Jiarong,Wang Nannan,Wang Yu,Song Yang,Li Xia

Abstract

The blind zone that accompanies the right-turn process of semitrailer trucks is a major cause of crashes and the high fatality of vulnerable road users (VRUs). Understanding the relationship between the blind zone and right-turn collisions will play a positive role in preventing such accidents. The purpose of this study was to investigate the formation of right-turn blind zones for semitrailer trucks and to determine the factors (turning speed, turning radius, and collision position) influencing the severity of accidents through real-world vehicle tests and PC-CRASH simulation. The results show that the calculation model of the inner wheel difference blind zone established for semitrailer trucks can provide more accurate estimation than the model for rigid trucks, due to the consideration of a virtual third axle between the tractor and the trailer. On the other hand, the PC-CRASH simulation test indicates the turning speed and turning radius directly affect the scale of the inner wheel difference blind zone, and larger blind zone and encroachment on adjacent lanes increase the potential for collision. Moreover, the difference in collision position is closely related to whether the rider suffers a secondary crush. Front position is more likely to cause the cyclist to be crushed. For further analysis, the long-term interaction between the blind zones resulting from the right rearview mirror and the inner wheel difference also increases the risk during a right turn. Therefore, reducing the blind zone in the right-turn process is the key to improving right-turn safety for semitrailer trucks and VRUs.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference42 articles.

1. Accidents between freight vehicles and bicycles, with a focus on urban areas

2. Safety impact analysis of large vehicles’ right-turn on pedestrians and non-motorized vehicle at signalized intersection;Sitao;Proceedings of the World Automation Congress,2012

3. Field Testing of a Cyclist Collision Avoidance System for Heavy Goods Vehicles

4. Design of Arduino-Based In-vehicle Warning Device for Inner Wheel Difference;Zhang;Proceedings of the 2019 IEEE 2nd International Conference on Electronics Technology (ICET),2019

5. Fatal and serious collisions involving pedal cyclists and trucks in London between 2007 and 2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Lane Change Assisting Framework for Large Vehicles;2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC);2023-09-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3