Optimization of cervical cage and analysis of its base material: A finite element study

Author:

Jalilvand Elahe1ORCID,Abollfathi Nabiolah2ORCID,Khajehzhadeh Mohsen3ORCID,Hassani-Gangaraj Mojtaba1

Affiliation:

1. Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran

2. Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran

3. Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran

Abstract

Nowadays, cervical disorders are common due to human lifestyles. Accordingly, the cage design should be optimized as an essential issue. For an optimal design, an objective function is utilized to calculate the proper geometrical parameters. Additionally, the base material of the cage plays a key role in its functionality and final cost. Novel materials are currently introduced with more compatibility with the bone in terms of mechanical and chemical properties. In this study, a cervical cage was modeled based on PEEK material with three types of tooth designs on its surface. The cervical cage is assumed to be implanted between C6 and C7 vertebrae. The geometric parameters of the cage were optimized to minimize the mass by determining allowable stress and subsidence. The effect of complete cortical removal was investigated as a surgical mistake. Finally, a new composition of PEEK/titanium was introduced as the base material of the cage. Ansys 18.2 was used for FEA. The cage with a straight tooth was chosen due to its lower stress and subsidence compared with other designs. Furthermore, the optimized structures of all three tooth designs were determined. The mass and volume of the optimal cages were reduced by 41.47% and 41.52% respectively. Besides, complete cortical resection should not be carried out during fusion surgery, since it may lead to higher subsidence. The composition of PEEK/titanium was chosen as an appropriate base material due to its better performance compared with PEEK or titanium alone.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3