Affiliation:
1. Department of Aerospace and Mechanical Engineering, University of Notre Dame, USA
2. Graduate Bioengineering Program, University of Notre Dame, USA
Abstract
New orthopedic implants for focal cartilage defects replace only a portion of the articulating joint and wear against the opposing cartilage surface. The objective of this study was to investigate different methodologies to quantify cartilage wear for future use in screening potential implant materials and finishes. In determining the optimal test parameters, two different cartilage surface geometries were compared: smaller specimens had a flat surface, while larger ones made contact in the center but not at the edge owing to the curvature of the articulating surface. The cartilage wear of the two geometries was compared using three different techniques: the collagen worn from the cartilage specimens was assessed with a modified wear factor, the surface damage was made visible with Indian ink and was quantified, and the change in surface roughness was measured. To interpret the experimental results, maximum shear stresses were evaluated with sliding contact finite element models. Although the modified wear factor was considered to be the most accurate assessment of cartilage wear, surface damage was an effective, inexpensive, and quick technique to evaluate potential implant materials. Flat specimens showed excessive wear at the edges owing to a non-physiologic stress concentration, while the larger specimens wore more uniformly across the surface. These results will be applied to future studies evaluating prospective implant materials.
Subject
Mechanical Engineering,General Medicine
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献