Friction and wear behaviors of HXLPE, PEEK and CoCrMo against articular cartilage under cross-shear motion

Author:

Lu Weiping1,Cui Wen1,Zhang Xiaogang1ORCID,Zhang Yali1,Yang Shu1,Pu Jian1,Li Junyan1,Jin Zhongmin123

Affiliation:

1. School of Mechanical Engineering, Tribology Research Institute, Southwest Jiaotong University, Chengdu, China

2. School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China

3. School of Mechanical Engineering, University of Leeds, Leeds, UK

Abstract

The friction and wear behaviors of cartilage replacement materials against articular cartilage are considered essential characteristics that determine the function and performance of the replacement. Previous studies have often been conducted under a reciprocal linear motion, while a cross-shear motion has been shown to widely exist in joints. The difference resulting between cross-shear motion and reciprocal linear motion, and the effect of bearing surface roughness on the frictional and wear behaviors of cartilage should be further investigated. In this study, experimental tribology investigations were conducted under the cross-shear motion for articular cartilage against commonly used three replacement materials, including high cross-linked polyethylene (HXLPE), polyether ether ketone (PEEK), and cobalt-chromium molybdenum alloy (CoCrMo). The experimental results showed that there was no significant difference in friction and wear behavior between cross-shear and reciprocal linear motion. For the implants with low surface roughness, the water contact angle of the bearing surface affected the friction and wear behaviors of the cartilage, while for the implants with high rough surfaces, the surface roughness of the material affected the friction and wear behaviors of the cartilage. The damage of cartilage under cross-shear motion mainly consisted of deformations and accumulations. This phenomenon was especially evident at high roughness. Of the three bearing materials considered, PEEK was more suitable for osteochondral implants.

Funder

Department of Science and Technology of Sichuan Province

Central University Basic Research Fund of China

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3