Carotid artery ultrasound image analysis: A review of the literature

Author:

Latha S1,Samiappan Dhanalakshmi1ORCID,Kumar R1

Affiliation:

1. Department of Electronics and Communication Engineering, SRM Institute of Science and Technology, Chennai, India

Abstract

Stroke is one of the prominent causes of death in the recent days. The existence of susceptible plaque in the carotid artery can be used in ascertaining the possibilities of cardiovascular diseases and long-term disabilities. The imaging modality used for early screening of the disease is B-mode ultrasound image of the person in the artery area. The objective of this article is to give a widespread review of the imaging modes and methods used for studying the carotid artery for identifying stroke, atherosclerosis and related cardiovascular diseases. We encompass the review in methods used for artery wall tracking, intima–media, and lumen segmentation which will help in finding the extent of the disease. Due to the characteristics of the imaging modality used, the images have speckle noise which worsens the image quality. Adaptive homomorphic filtering with wavelet and contourlet transforms, Levy Shrink, gamma distribution were used for image denoising. Learning-based neural network approaches for denoising give better edge preservation. Domain knowledge-based segmentation approaches have proved to provide more accurate intima–media thickness measurements. There is a requirement of useful fully automatic segmentation approaches, 3D, 4D systems, and plaque motion analysis. Taking into consideration the image priors like geometry, imaging physics, intensity and temporal data, image analysis has to be performed. Encouragingly more research has focused on content-specific segmentation and classification techniques. With the evaluation of machine learning algorithms, classifying the image as with or without a fat deposit has gained better accuracy and sensitivity. Machine learning–based approaches like self-organizing map, k-nearest neighborhood and support vector machine achieve promising accuracy and sensitivity in classification. The literature reveals that there is more scope in identifying a patient-specific model in a fully automatic manner.

Funder

institution of engineers

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3