An optimal brain tumor detection by convolutional neural network and Enhanced Sparrow Search Algorithm

Author:

Liu Tingting1,Yuan Zhi2,Wu Li1,Badami Benjamin3ORCID

Affiliation:

1. Department of Oncology – Cardiology, Affiliated Tumor Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China

2. Engineering Research Center of Renewable Energy Power Generation and Grid-Connected Control, Ministry of Education, Xinjiang University, Urumqi, Xinjiang, China

3. University of Georgia, Athens, USA

Abstract

Precise and timely detection of brain tumor area has a very high effect on the selection of medical care, its success rate and following the disease process during treatment. Existing algorithms for brain tumor diagnosis have problems in terms of better performance on various brain images with different qualities, low sensitivity of the results to the parameters introduced in the algorithm and also reliable diagnosis of tumors in the early stages of formation. A computer aided system is proposed in this research for automatic brain tumors diagnosis. The method includes four main parts: pre-processing and segmentation techniques, features extraction and final categorization. Gray-level co-occurrence matrix (GLCM) and Discrete Wavelet Transform (DWT) were applied for characteristic extraction of the MR images which are then injected to an optimized convolutional neural network (CNN) for the final diagnosis. The CNN is optimized by a new design of Sparrow Search Algorithm classification (ESSA). Finally, a comparison of the results of the method with three state of the art technique on the Whole Brain Atlas (WBA) database to show its higher efficiency.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3