Prediction of dissolved gas content in transformer oil based on multi‐information fusion

Author:

Yang Tongliang12,Fang Yun1,Zhang Chengming1,Tang Chao12,Hu Dong12ORCID

Affiliation:

1. College of Engineering and Technology Southwest University Chongqing China

2. International R&D Center for New Technologies of Smart Grid and Equipment Southwest University Chongqing China

Abstract

AbstractIn order to accurately predict the content and variation trend of dissolved gas in transformer oil and guide the condition maintenance of power transformers, a combined prediction model based on multi‐information fusion is proposed and its effectiveness is analysed. First of all, based on the possibility of pathological and missing historical sample data, a detection and filling method based on variable weight combination samples is established. Second, the authors propose two models. Aiming at the non‐linear and non‐stationary characteristics of gas content, a univariate decomposition prediction mode HBA‐VMD‐TCN which based on the Honey Badger algorithm, variational mode decomposition and time convolutional network (TCN) is established. Then the multivariate Informer prediction model is established for gas content affected by multiple variables. Third, the cross‐entropy theory is used to determine the weight coefficients of the two models, and the multi‐information fusion combined prediction model is formed. Finally, on the basis of the above, a method to determine the time step and the position information of the transition point adaptively in the process of prediction is proposed to further improve the prediction accuracy. The results show that, through a series of simulation experiments of model comparison and transformer anomaly prediction, the accuracy and effectiveness of the combined prediction model are verified.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3