A dissimilarity-based multiple classifier system for trabecular bone texture in detection and prediction of progression of knee osteoarthritis

Author:

Woloszynski Tomasz1,Podsiadlo Pawel1,Stachowiak Gwidon1,Kurzynski Marek2

Affiliation:

1. Tribology Laboratory, School of Mechanical and Chemical Engineering, The University of Western Australia, Perth, WA, Australia

2. Faculty of Electronics, Wroclaw University of Technology, Wroclaw, Poland

Abstract

There is a growing need for classification systems that can accurately detect and predict knee osteoarthritis (OA) from plain radiographs. For this purpose, a system based on a support vector machine (SVM) classifier and distances measured between trabecular bone (TB) texture images was developed and tested in previous work. Unlike other systems, it allows an image classification without the calculation and selection of numerous texture features, and it is invariant to a range of imaging conditions encountered in a routine X-ray screening of knees. Although the system exhibited 85.4% classification accuracy in OA detection, which was higher than those obtained from other systems, its performance could be further improved. To achieve this, a dissimilarity-based multiple classifier (DMC) system is developed in this study. The system measures distances between TB texture images and generates a diverse ensemble of classifiers using prototype selection, bootstrapping of training set and heterogeneous classifiers. A measure of competence is used to select accurate (i.e. better-than-random) classifiers from the ensemble, which are then combined through the majority voting rule. To evaluate the newly developed system in OA detection (prediction of OA progression), TB texture images selected on standardised radiographs of healthy and OA (non-progressive and progressive OA) knees were used. The results obtained showed that the DMC system has higher classification accuracies for the detection (90.51% with 87.65% specificity and 93.33% sensitivity) and prediction (80% with 82.00% specificity and 77.97% sensitivity) than other systems, indicating its potential as a decision-support tool for the assessment of radiographic knee OA.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3