Abstract
Abstract
Background
Trabecular bone texture (TBT) analysis has been identified as an imaging biomarker that provides information on trabecular bone changes due to knee osteoarthritis (KOA). In parallel with the improvement in medical imaging technologies, machine learning methods have received growing interest in the scientific osteoarthritis community to potentially provide clinicians with prognostic data from conventional knee X-ray datasets, in particular from the Osteoarthritis Initiative (OAI) and the Multicenter Osteoarthritis Study (MOST) cohorts.
Patients and methods
This study included 1888 patients from OAI and 683 patients from MOST cohorts. Radiographs were automatically segmented to determine 16 regions of interest. Patients with an early stage of OA risk, with Kellgren and Lawrence (KL) grade of 1 < KL < 4, were selected. The definition of OA progression was an increase in the OARSI medial joint space narrowing (mJSN) grades over 48 months in OAI and 60 months in MOST. The performance of the TBT-CNN model was evaluated and compared to well-known prediction models using logistic regression.
Results
The TBT-CNN model was predictive of the JSN progression with an area under the curve (AUC) up to 0.75 in OAI and 0.81 in MOST. The predictive ability of the TBT-CNN model was invariant with respect to the acquisition modality or image quality. The prediction models performed significantly better with estimated KL (KLprob) grades than those provided by radiologists. TBT-based models significantly outperformed KLprob-based models in MOST and provided similar performances in OAI. In addition, the combined model, when trained in one cohort, was able to predict OA progression in the other cohort.
Conclusion
The proposed combined model provides a good performance in the prediction of mJSN over 4 to 6 years in patients with relevant KOA. Furthermore, the current study presents an important contribution in showing that TBT-based OA prediction models can work with different databases.
Publisher
Springer Science and Business Media LLC
Reference30 articles.
1. Akaike H. A new look at the statistical model identification. IEEE Trans Autom Control. 1974;19:716–23.
2. Bedi P, Gupta N, Jindal V. Siam-IDS: handling class imbalance problem in intrusion detection systems using Siamese neural network; 2019.
3. Callahan LF, Ambrose KR, Albright AL, Altpeter M, Golightly YM, Huffman KF, et al. Public health interventions for osteoarthritis - updates on the osteoarthritis action Alliance’s efforts to address the 2010 OA public health agenda recommendations. Clin Exp Rheumatol. 2019;37(Suppl 120):31–9.
4. Chen P, Gao L, Shi X, Allen K, Yang L. Fully automatic knee osteoarthritis severity grading using deep neural networks with a novel ordinal loss. Comput Med Imaging Graph. 2019;75:84–92 Available at: http://www.sciencedirect.com/science/article/pii/S0895611118304956 [Accessed 12 Apr 2020].
5. Conaghan PG, Hunter DJ, Maillefert JF, Reichmann WM, Losina E. Summary and recommendations of the OARSI FDA osteoarthritis assessment of structural change working group. Osteoarthr Cartil. 2011;19:606–10.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献