Evaluation of bone excision effects on a human skull model—II: Finite element analysis

Author:

Franceskides Constantinos1,Gibson Michael2,Zioupos Peter1ORCID

Affiliation:

1. Musculoskeletal and Medicolegal Research Group, Cranfield Forensic Institute, Cranfield University, Defence Academy of the United Kingdom, Shrivenham, UK

2. Centre for Simulation & Analytics, Cranfield University, Defence Academy of the United Kingdom, Shrivenham, UK

Abstract

Patient-specific computational models are powerful tools which may assist in predicting the outcome of invasive surgery on the musculoskeletal system, and consequently help to improve therapeutic decision-making and post-operative care. Unfortunately, at present the use of personalized models that predict the effect of biopsies and full excisions is so specialized that tends to be restricted to prominent individuals, such as high-profile athletes. We have developed a finite element analysis model to determine the influence of the location of an ellipsoidal excision (14.2 mm × 11.8 mm) on the structural integrity of a human skull when exposed to impact loading, representing a free fall of an adult male from standing height. The finite element analysis model was compared to empirical data based on the drop-tower testing of three-dimensional-printed physical skull models where deformations were recorded by digital image correlation. In this bespoke example, we found that the excision site did not have a major effect on the calculated stress and strain magnitudes unless the excision was in the temporal region, where the reduction in stiffness around the excision caused failure within the neighboring area. The finite element analysis model allowed meaningful conclusions to be drawn for the implications of using such a technique based on what we know about such conditions indicating that the approach could be both clinically beneficial and also cost-effective for wider use.

Funder

cranfield university

RCDM Birmingham

Vision Research

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluation of bone excision effects on a human skull model—II: Finite element analysis;Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine;2019-12-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3