Effects of non-Fourier bioheat transfer on bone drilling temperature in orthopedic surgery: Theoretical and in vitro experimental investigation

Author:

Kabiri Ali1,Talaee Mohammad Reza1ORCID

Affiliation:

1. School of Railway Engineering, Iran University of Science and Technology, Tehran, Iran

Abstract

The mechanical drilling process is a typical step in treating bone fractures to fix broken parts with screws and plates. Drilling generates a significant amount of heat and elevates the temperature of the bone, which can cause thermal osteonecrosis and damage to the surrounding bone tissue and nerves. Thermal inertia between heat flux and temperature gradient in nonhomogeneous interior structural medium-like biological tissues is arguable. Therefore, this paper proposes an analytical model of heat propagation in bone drilling for orthopedic surgery based on the hyperbolic Pennes bioheat transfer equation (HPBTE). Drilling experiments in bovine cortical bone samples were also carried out using an infrared thermography approach to confirm the proposed analytical model. Around the drilled hole surface, thermal necrosis is spread out from 1 to 10 mm. Increased feed rate reduces necrosis penetration distance and increases intense bone necrosis. The HPBTE includes thermal relaxation time effect and internal convective function of tissue perfusion rate. As these factors are not considered in the parabolic heat transfer equation (PHTE), the results show that the HPBTE is more accurate in predicting temperature and thermal osteonecrosis than the PHTE. As a result, proposed analytical model is a handy tool for calculating temperature to avoid thermal damage while improving process efficiency. Furthermore, it has the capability of controlling the manual or robotic drilling procedure for minimally invasive operations.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3