Multi-objective optimization of cortical bone grinding parameters based on particle swarm optimization

Author:

Zheng Qingchun1,Zhu Yuying1,Fan Zhenhao1,Wang Daohan2,Zhang Chunqiu13,Liu Shuhong3,Hu Yahui1ORCID,Fu Weihua2ORCID

Affiliation:

1. Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China

2. Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China

3. Tianjin Key Laboratory of Bone Implant Interface Functionalization and Personality Research, Just Medical Equipment (Tianjin) Co., Ltd., Tianjin, China

Abstract

Grinding is a fundamental operation in craniotomy. Suitable grinding parameters will not only reduce force damage, but also ensure grinding efficiency. In this study, the regression equations of material removal rate and grinding force were obtained based on the theory of cortical bone grinding and full factorial test results, a multi-objective optimization based on the particle swarm algorithm was proposed for optimizing the grinding parameters: spindle speed, feed speed, and grinding depth in the grinding process. Two conflicting objectives, minimum grinding force and maximum material removal rate, were optimized simultaneously. The results revealed that the optimal grinding parameter combination and optimization results were as follows: spindle speed of 5000 rpm, feed rate of 60 mm/min, grinding depth of 0.6 mm, grinding force of 15.1 N, and material removal rate of 113.8 mm3/min. The parameter optimization result can provide theoretical guidance for selecting cortical bone grinding parameters in actual craniotomy.

Funder

The Key Science and Technology Support Project of Tianjin

The Tianjin Science and Technology Plan Project Major Program of Biomedical Engineering Science and Technology

National key research and development plan project

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3